Medidas de tendencia central usadas en epidemiología

Concepto de variable
La función de las variables consiste en proporcionar información asequible para descomponer la hipótesis planteada en sus elementos más simples. Las variables pueden definirse como aquellos atributos o características de los eventos, de las personas o de los grupos de estudio que cambian de una situación a otra o de un tiempo a otro y que, por lo tanto, pueden tomar diversos valores. Para su estudio es necesario medirlas en el objeto investigado, y es en el marco del problema y de las hipótesis planteadas donde adquieren el carácter de variables.
De acuerdo con la relación que guardan unas con otras, las variables se clasifican en independientes (o variables explicativas) y dependientes (o variables respuesta). Cuando se supone que una variable produce un cambio en otra, se considera a la primera como independiente (o causa) y a la segunda como dependiente (o efecto). En los estudios epidemiológicos la enfermedad o evento es por lo general la variable dependiente y los factores que determinan su aparición, magnitud y distribución son las variables independientes, o exposición. No obstante, el concepto de dependencia e independencia es contextual, es decir, obedece al modelo teórico planteado. Una vez que se han identificado las variables el investigador debe definirlas de manera operativa, especificando el método y la escala con las cuales llevará a cabo su medición.
El uso de variables permite a la epidemiología la elaboración de modelos descriptivos, explicativos y predictivos sobre la dinámica de la salud poblacional. En los modelos más sencillos (por ejemplo, en los modelos en los que se considera una sola exposición y un solo daño o evento) las variables generalmente se expresan en tablas simples de dos categorías mutuamente excluyentes (llamadas dicotómicas), representadas por la ausencia y la presencia de la exposición y la ausencia y la presencia del evento. Al combinar ambas categorías se forma una tabla con dos filas y dos columnas, conocida como tabla tetracórica o tabla de 2 por 2. Cuando, en cambio, existen más de dos categorías de exposición, o varias formas de clasificar el evento, esta relación se expresa en tablas de varias columnas y varias celdas. En este texto se analizará la elaboración de medidas epidemiológicas basadas en categorías dicotómicas y el uso de tablas de 2 X 2.
Concepto de medición
La medición consiste en asignar un número o una calificación a alguna propiedad específica de un individuo, una población o un evento usando ciertas reglas. No obstante, la medición es un proceso de abstracción. En términos estrictos no se mide al individuo sino cierta característica suya, abstrayéndola de otras propiedades. Uno no mide al niño sino que obtiene información sobre su estatura o su peso. Además, lo que se hace es comparar el atributo medido en otros individuos (o en el mismo individuo en otro momento), con el fin de evaluar sus cambios en el tiempo o cuando se presenta en condiciones distintas de las originales.
Para medir es necesario seguir un proceso que consiste, en breves palabras, en el paso de una entidad teórica a una escala conceptual y, posteriormente, a una escala operativa.
En general, los pasos que se siguen durante la medición son los siguientes: a) se delimita la parte del evento que se medirá, b) se selecciona la escala con la que se medirá, c) se compara el atributo medido con la escala y, d) finalmente, se emite un juicio de valor acerca de los resultados de la comparación. Para medir el crecimiento de un menor, por ejemplo, primero se selecciona la variable a medir (la edad, el peso, la talla); luego se seleccionan las escalas de medición (meses cumplidos, centímetros, gramos); inmediatamente después se comparan los atributos con las escalas seleccionadas (un mes de edad, 60 cm de talla, 4 500 gramos de peso) y, por último, se emite un juicio de valor, que resume la comparación entre las magnitudes encontradas y los criterios de salud aceptados como válidos en ese momento. Como resultado, el infante se califica como bien nutrido, desnutrido o sobre nutrido.
Como se puede notar, la medición es un proceso instrumental sólo en apariencia, ya que la selección de la parte que se medirá, de la escala de medición y de los criterios de salud que se usarán como elementos de juicio deben ser resultado de un proceso de decisión teórica. En otras palabras, sólo puede medirse lo que antes se ha concebido teóricamente. La medición, sin embargo, nos permite alcanzar un alto grado de objetividad al usar los instrumentos, escalas y criterios aceptados como válidos por la mayor parte de la comunidad científica.
Principales escalas de medición
Las escalas se clasifican en cualitativas (nominal y ordinal) y cuantitativas (de intervalo y de razón). Un requisito indispensable en todas las escalas es que las categorías deben ser exhaustivas y mutuamente excluyentes. En otras palabras, debe existir una categoría para cada caso que se presente y cada caso debe poder colocarse en una sola categoría.
  • Escala nominal

La medición de carácter nominal consiste simplemente en clasificar las observaciones en categorías diferentes con base en la presencia o ausencia de cierta cualidad. De acuerdo con el número de categorías resultantes, las variables se clasifican en dicotómicas (dos categorías) o politómicas (más de dos categorías). En las escalas nominales no es posible establecer un orden de grado como mejor o peor, superior o inferior, o más o menos. La asignación de códigos numéricos a las categorías se hace con el único fin de diferenciar unas de otras y no tienen interpretación en lo que se refiere al orden o magnitud del atributo. Como ejemplos de este tipo de medición en la investigación epidemiológica se pueden mencionar el sexo (masculino "0", femenino "1"), el estado civil (soltero, casado, viudo, divorciado), la exposición o no a un factor X, y el lugar de nacimiento, entre otras.
  • Escala ordinal

En contraste con las escalas nominales, en este tipo de medición las observaciones se clasifican y ordenan por categorías según el grado en que los objetos o eventos poseen una determinada característica. Por ejemplo, se puede clasificar a las personas con respecto al grado de una enfermedad en leve, moderado o severo. Si se llega a utilizar números en este tipo de escalas su única significación consiste en indicar la posición de las distintas categorías de la serie y no la magnitud de la diferencia entre las categorías. Para la variable antes mencionada, por ejemplo, sabemos que existe una diferencia de grado entre leve y severo, pero no es posible establecer con exactitud la magnitud de la diferencia en las enfermedades de una u otra personas.
  • Escala de intervalo

Esta es una escala de tipo cuantitativo en la que, además de ordenar las observaciones por categorías del atributo, se puede medir la magnitud de la distancia relativa entre las categorías. Esta escala, sin embargo, no proporciona información sobre la magnitud absoluta del atributo medido. Por ejemplo, se puede obtener una escala de intervalo para la altura de las personas de un grupo si, en lugar de medirlas directamente, se mide la altura de cada persona con respecto a la altura promedio. En este caso, el valor cero es arbitrario y los valores asignados a la altura no expresan su magnitud absoluta. Esta es la característica distintiva de las escalas de intervalo en comparación con las de razón.
El ejemplo más conocido de las escalas de intervalo es la escala de Celsius para medir la temperatura, en la que por convención el grado cero corresponde al punto de congelación del agua y donde, por lo tanto, la razón entre dos objetos con temperaturas de 10 y 20 grados no indica que uno de ellos sea realmente dos veces más caliente (o más frío) que el otro. En ciencias de la salud, un buen ejemplo de este tipo de escalas es la utilizada para medir el coeficiente intelectual.
  • Escalas de razón

Esta escala tiene la cualidad de que el cero sí indica la ausencia del atributo y, por lo tanto, la razón entre dos números de la escala es igual a la relación real existente entre las características de los objetos medidos. En otras palabras, cuando decimos que un objeto pesa 8 kg estamos también diciendo que pesa el doble que otro cuyo peso es de 4 kg, y que un avión que viaja a 600 km por hora tardará en llegar a su destino la mitad del tiempo que tardaría si viajara a 300 km por hora. Muchas características biofísicas y químicas que pueden ser medidas en las unidades convencionalmente aceptadas (metros, gramos, micras, mol/kg, mg/dl, etc.) son ejemplos de mediciones que corresponden a este tipo de escala. En materia de investigación social y de salud, el ingreso económico y la concentración de plomo en sangre son buenos ejemplos de este tipo de escalas.
Cálculo de proporciones, tasas y razones
Un rasgo característico de la contrastación en los estudios epidemiológicos es que las relaciones causales postuladas entre las variables se traducen en términos probabilísticos. Es decir, se trata de establecer si la mayor o menor probabilidad de que un evento ocurra se debe precisamente a los factores que se sospecha intervienen en su génesis y no al azar. Para cumplir con este objetivo, la investigación epidemiológica se basa en la construcción de tres tipos de medidas: a) de frecuencia; b) de asociación o efecto, y c) de impacto potencial. La construcción de estas medidas se realiza por medio de operaciones aritméticas simples y de los instrumentos matemáticos conocidos como razones, proporciones y tasas. Antes de abordar las medidas utilizadas en los estudios epidemiológicos repasaremos brevemente estos tres conceptos.
Proporciones
Las proporciones son medidas que expresan la frecuencia con la que ocurre un evento en relación con la población total en la cual éste puede ocurrir. Esta medida se calcula dividiendo el número de eventos ocurridos entre la población en la que ocurrieron. Como cada elemento de la población puede contribuir únicamente con un evento es lógico que al ser el numerador (el volumen de eventos) una parte del denominador (población en la que se presentaron los eventos) aquel nunca pueda ser más grande que éste. Esta es la razón por la que el resultado nunca pueda ser mayor que la unidad y oscile siempre entre cero y uno.
Por ejemplo, si en un año se presentan tres muertes en una población compuesta por 100 personas, la proporción anual de muertes en esa población será:
A menudo las proporciones se expresan en forma de porcentaje, y en tal caso los resultados oscilan entre cero y 100. En el ejemplo anterior, la proporción anual de muertes en la población sería de 3 por 100, o de 3%. Nótese, asimismo, que el denominador no incluye el tiempo. Las proporciones expresan únicamente la relación que existe entre el número de veces en las que se presenta un evento y el número total de ocasiones en las que se pudo presentar.
Tasas
Las tasas expresan la dinámica de un suceso en una población a lo largo del tiempo. Se pueden definir como la magnitud del cambio de una variable (enfermedad o muerte) por unidad de cambio de otra (usualmente el tiempo) en relación con el tamaño de la población que se encuentra en riesgo de experimentar el suceso. En las tasas, el numerador expresa el número de eventos acaecidos durante un periodo en un número determinado de sujetos observados.
A diferencia de una proporción el denominador de una tasa no expresa el número de sujetos en observación sino el tiempo durante el cual tales sujetos estuvieron en riesgo de sufrir el evento. La unidad de medida empleada se conoce como tiempo-persona de seguimiento. Por ejemplo, la observación de 100 individuos libres del evento durante un año corresponde a 100 años-persona de seguimiento; de manera similar, 10 sujetos observados durante diez años corresponden a 100 años-persona.
Dado que el periodo entre el inicio de la observación y el momento en que aparece un evento puede variar de un individuo a otro, el denominador de la tasa se estima a partir de la suma de los periodos de todos los individuos. Las unidades de tiempo pueden ser horas, días, meses o años, dependiendo de la naturaleza del evento que se estudia.
El cálculo de tasas se realiza dividiendo el total de eventos ocurridos en un periodo dado en una población entre el tiempo-persona total (es decir, la suma de los periodos individuales libres de la enfermedad) en el que los sujetos estuvieron en riesgo de presentar el evento. Las tasas se expresan multiplicando el resultado obtenido por una potencia de 10, con el fin de permitir rápidamente su comparación con otras tasas.

Razones
Las razones pueden definirse como magnitudes que expresan la relación aritmética existente entre dos eventos en una misma población, o un solo evento en dos poblaciones. En el primer caso, un ejemplo es la razón de residencia hombre: mujer en una misma población. Si en una localidad residen 5 000 hombres y 4 000 mujeres se dice que, en ese lugar, la razón de residencia hombre:mujer es de 1:0.8 (se lee 1 a 0.8), lo que significa que por cada hombre residen ahí 0.8 mujeres. Esta cantidad se obtiene como sigue:
En este caso, también se podría decir que la razón hombre:mujer es de 10:8, pues esta expresión aritmética es igual a la primera (1:0.8).
En el segundo ejemplo se encuentran casos como la razón de tasas de mortalidad por causa específica (por ejemplo, por diarreas) en dos comunidades. En este caso, la razón expresaría la relación cuantitativa que existe entre la tasa de mortalidad secundaria a diarreas registrada en la primera ciudad y la tasa de mortalidad secundaria a diarreas registrada en la segunda. La razón obtenida expresa la magnitud relativa con la que se presenta este evento en cada población. Si la tasa de mortalidad por diarreas en la primera ciudad es de 50 por 1 000 y en la segunda de 25 por 1 000 la razón de tasas entre ambas ciudades sería:



Donde RTM es la razón de tasas de mortalidad (en este caso, por diarreas) entre las ciudades A y B. El resultado se expresa como una razón de 1:2, lo que significa que por cada caso en la ciudad A hay 2 en la ciudad B.
Medidas de frecuencia
El paso inicial de toda investigación epidemiológica es medir la frecuencia de los eventos de salud con el fin de hacer comparaciones entre distintas poblaciones o en la misma población a través del tiempo. No obstante, dado que el número absoluto de eventos depende en gran medida del tamaño de la población en la que se investiga, estas comparaciones no se pueden realizar utilizando cifras de frecuencia absoluta (o número absoluto de eventos).
Conclusión: En  la epidemiología, el proceso de investigación es similar al utilizado en el resto de las ciencias. Cuando se investiga la salud de la población también se proponen una o varias explicaciones hipotéticas que posteriormente son sometidas a contrastación empírica. En este proceso, los conceptos de medición y de variable resultan fundamentales.

REFERENCIAS 
https://www.scielosp.org/article/spm/2000.v42n4/337-348/ 


No hay comentarios.:

Publicar un comentario